News
13/5/2016

CRG: Fluorescent jellyfish gene sheds light on 'fitness landscape'

CRG: Fluorescent jellyfish gene sheds light on 'fitness landscape'


News from CRG


Until now, researchers have tended to only study single ‘letter’ changes (mutations) in a gene, observing the effect of the alteration on the resulting protein. But in real life, organisms have many DNA changes and variations scattered throughout their genes, which can all interact together to affect the outcome. Now Fyodor Kondrashov, ICREA research professor and leader of the Evolutionary Genomics lab at the Centre for Genomic Regulation (CRG), and his team have scanned through thousands of different versions of a jellyfish gene encoding a Green Fluorescent Protein (GFP), analysing the effect of one, two or multiple mutations on the fluorescence levels of the resulting proteins.

Rather than having to examine thousands of jellyfish, the researchers made mutations in a version of the GFP gene that had been transferred into lab bacteria called E. coli, which produce the altered fluorescent protein as they grow. Some changes don’t affect the level of fluorescence of the protein, while others make it dimmer or get rid of the glow altogether.

Thanks to advances in DNA sequencing – the technology that allows scientists to ‘read’ the genetic code – Kondrashov and his team were able to find out exactly what changes had been made within every altered version of the GFP gene and link that back to any changes in fluorescence of the protein. Surprisingly, they found that some combinations of mutations had a more pronounced effect on the fluorescence than might have been predicted from the effect of each single change by itself.

More information:
CRG Website

Reference work:
Sarkisyan Karen S. et al. ‘Local fitness landscape of the green fluorescent protein’ Nature. May 2016. http://dx.doi.org/10.1038/nature17995