News
10/11/2017

CRG: A new method accelerates the mapping of genes in the “Dark Matter” of our DNA

CRG: A new method accelerates the mapping of genes in the “Dark Matter” of our DNA


News from the CRG


The information in the sequence of the human genome has a paramount importance in biomedical research. However, the value of this information is very limited in absence of a detailed map of the genes encoded in the genome. The genes are the basic biological units responsible for the biological traits of organism. Detailed information already exists, on the genomic regions that contain the genes that code for proteins, but the information about non-coding DNA regions – also known as DNA “dark matter” – lags behind. Here are found poorly-understood genes called “long non-coding RNAs” (lncRNAs), which are amongst the most numerous of all, and have been linked to a variety of diseases.

In a paper published today in Nature Genetics, an international team of scientists led by researchers at the Centre for Genomic Regulation (CRG) in Barcelona, in collaboration with researchers at Cold Spring Harbor in New York, the Wellcome Trust Sanger Institute in Hinxton, and qGenomics in Barcelona, sheds new light on this topic. In order to better identify, map, and characterize those “dark matter” genes, they have developed a new method that improves throughput and accuracy of current methods, and applied it in human and mouse.

More information:
CRG website

 

Reference:
Julien Lagarde, Barbara Uszczynska-Ratajczak, Silvia Carbonell, Sílvia Pérez-Lluch, Amaya Abad, Carrie Davis, Thomas R Gingeras, Adam Frankish, Jennifer Harrow, Roderic Guigó and Rory Johnson. ‘High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing'. Nature Genetics. 2017. DOI: 10.1038/ng.3988