News
20/9/2019

CRG: Like an instruction manual, the genome groups genes together for convenience

CRG: Like an instruction manual, the genome groups genes together for convenience


News from the CRG


Every living organism’s cell has a complete copy of DNA, life’s instruction book, which is condensed tightly in chromosomes. Every time the cell needs to perform a function, it activates genes that open or close different regions in the DNA. Like following an instruction manual with consecutive pages, it’s easier to activate two genes that are closer together to complete a function.

Until now, we knew little how the genome of eukaryotic organisms (organisms with complex cells with a nucleus) organized groups of genes in accordance with their function, i.e. whether they were physically near or not. Previous studies have studied the link between gene clusters and the secondary metabolism, which are responsible to create penicillin and other toxins with antibiotic properties.

In a study published today in Nature Microbiology, researchers from the Centre of Genomic Regulation (CRG) in Barcelona, led by ICREA Professor Toni Gabaldón, now at the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS), shed light on this sorting process in primary metabolism. They chose to study fungi because they have smaller genomes and are easier to sequence than other eukaryote species like plants or animals.

“Natural selection means some genes are near each other for functional relevance. The way they’re organized isn’t random chance – they have been selected because it makes regulating genes easier. We’ve found that it’s pretty common, and that it affects an important proportion of the genome,” says Gabaldón. “The selective forces favour the conformations of genes that allow a smaller investment in energy and improved regulatory processes,” he adds.

More information:
CRG news

Reference:
Marcet-Houben M and Gabaldón T. “Evolutionary and functional patterns of shared gene clusters in fungi”. Nature Microbiology, Set 16 2019. http://dx.doi.org/10.1038/s41564-019-0552-0