News
17/7/2020

Blood vessels communicate with sensory neurons to decide whether they remain as a reservoir of stem cells or differentiate

Blood vessels communicate with sensory neurons to decide whether they remain as a reservoir of stem cells or differentiate


News from DCEXS-UPF


Researchers at UPF have shown for the first time that blood vessels communicate with neurons in the peripheral nervous system, regulating their proliferation and differentiation. The study is published today in the journal Cell Reports and was conducted using zebrafish as a model. It was led by Berta Alsina, principal investigator of the Morphogenesis and Cell Signaling in Sensory Systems group, and involved Laura Taberner and Aitor Bañón.

The researchers, using real-time videos, have discovered that both the neurons and the cells of blood vessels emit dynamic protrusions to be able to ‘talk’ to each other. These protrusions are called signalling filopodia or cytonemes and they have a receptor or ligand at the tip that allows them to send signals. It was only very recently discovered and it is a highly precise signalling mechanism, both in space and in time.

"It was known that vessel cells and stem cells in the brain communicate but this is the first time it has been witnessed through cytonemes in the peripheral nervous system”, Berta Alsina explains. “By using high resolution spatiotemporal visualization techniques in vivo we have seen them in real time and they might also be in the brain”, she adds.

More information:
DCEXS-UPF website

Reference:
L Taberner, A Bañón, B Alsina. Sensory neuroblast quiescence depends on vascular cytoneme contacts and sensory neuronal differentiation requires initiation of blood flow. Cell Reports, July 2020.