CRG researchers sequence and analyse for the first time the sugar beet genome

CRG researchers sequence and analyse for the first time the sugar beet genome

News from CRG

A team of researchers from the Centre for Genomic Regulation (CRG) and the Max Planck Institute for Molecular Genetics (Berlin, Germany), lead by Heinz Himmelbauer, head of the Genomics Unit at the CRG in Barcelona, together with researchers from Bielefeld and further partners from academia and the private sector, have been able to sequence and analyse for the first time the genes of the sweet beetroot. The results of the study, that have been published in Nature, shed also light on how the genome has been shaped by artificial selection.

“Information held in the genome sequence will be useful for further characterization of genes involved in sugar production and identification of targets for breeding efforts. These data are key to improvements of the sugar beet crop with respect to yield and quality and towards its application as a sustainable energy crop”, the authors suggest.

27,421 protein-coding genes were discovered within the genome of the beet, more than are encoded within the human genome. “Sugar beet has a lower number of genes encoding transcription factors than any flowering plant with already known genome”, adds Bernd Weisshaar, a principle investigator from Bielefeld University who was involved in the study.

More information:
CRG website

Juliane C. Dohm, André E. Minoche, Daniela Holtgräwe, Salvador Capella Gutiérrez, Falk Zakrzewski, Hakim Tafer, Oliver Rupp, Thomas Rosleff Sörensen, Ralf Stracke, Richard Reinhardt, Alexander Goesmann, Thomas Kraft, Britta Schulz, Peter F. Stadler, Thomas Schmidt, Toni Gabaldón, Hans Lehrach, Bernd Weisshaar, Heinz Himmelbauer. ‘The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)’ Nature. Dec 2013. DOI: