IMIM: The promiscuity of chemical probes discovered

IMIM: The promiscuity of chemical probes discovered

News from IMIM

Researchers at IMIM (Hospital del Mar Medical Research Institute) have applied a new computational methodology to anticipate the degree of selectivity of the molecules that are used to study protein functions and reduce the risk of establishing erroneous relations between proteins and diseases. The proteins under study could be future candidates for new therapeutic targets. The study is published in the prestigious journal ACS Chemical Biology and was selected for the cover.

Small molecules are essential tools for exploring protein functions, as they have the capacity to activate, inhibit and modulate their function. For many years, in order to explore protein functions, namely to know their biological role, small molecules known as 'chemical probes' have been used, which interact with the protein under study, to become a possible candidate as a new therapeutic target. However, in order for them to be truly useful, these molecules must selectively interact with the protein under study. ‘Until now, it was assumed that these chemical probes only and exclusively interacted with the protein that was being studied, so that any variations in the results of experiments were interpreted as the consequence of the selective interaction of the chemical probe with the protein under study’ comments Jordi Mestres, coordinator of the Research Group in Systems Pharmacology at the Research Programme on Biomedical Informatics (GRIB for its Spanish acronym) at IMIM and the UPF.

More information:
IMIM news


Distant Polypharmacology among MLP Chemical Probes”, Albert A. Antolín and Jordi Mestres. ACS Chem Biol DOI: 10.1021/cb500393m