Noticias
5/12/2019

Scientists build a ‘Hubble Space Telescope’ to study the evolution of life through genome sequences

Scientists build a ‘Hubble Space Telescope’ to study the evolution of life through genome sequences


News from CRG


A new tool that simultaneously compares 1.4 million genetic sequences can classify how species are related to each other at far larger scales than previously possible. Described in Nature Biotechnology by researchers from the Centre for Genomic Regulation (CRG) in Barcelona, the technology can reconstruct how life has evolved over hundreds of millions of years and makes important inroads for the ambition to understand the code of life for every living species on Earth.

Protecting Earth’s biodiversity is one of the most urgent global challenges of our times. To steward the planet for all life forms, humanity must understand the way animals, fungi, bacteria and other organisms have evolved and how they interact amongst millions of other species. Sequencing the genome of life on Earth can unlock previously unknown secrets that yield fresh insights into the evolution of life, while bringing new foods, drugs and materials that pinpoint strategies for saving species at risk of extinction. 

The most common way scientists study these relationships is by using Multiple Sequence Alignments (MSA), a tool that can be used to describe the evolutionary relationships of living organisms by looking for similarities and differences in their biological sequences, finding matches among seemingly unrelated sequences and predicting how a change at a specific point in a gene or protein might affect its function. The technology underpins so much biological research that the original study describing it is one of the most cited papers in history. 

“We currently use multiple sequence alignments to understand the family tree of species evolution,” says Cédric Notredame, a researcher at the Centre for Genomic Regulation in Barcelona and lead author of the study. “The bigger your MSA, the bigger the tree and the deeper we dig into the past and find how species appeared and separated from each other.

 

More information:
CRG website